
Project: The Capture of Satellites by Binary-Planet Encounters  -  Course: HET 617, November 2006 
Instructor: Dr. Sarah Maddison  -  Student: Eduardo Manuel Alvarez 

Page 1 of 25 

 
The Capture of Satellites by Binary-Planet Encounters: 

A Computational Analysis of the Cases of Triton, Phobos and Deimos  
 

 
Abstract 
 
Conversely to regular satellites, irregular ones have been widely accepted to be foreign bodies 
originated elsewhere from their present location, that early in the Solar System history were 
somehow captured by planets. However, despite almost unanimous agreement about the what and 
when, the question about how such irregular satellites became gravitationally apprehended by 
planets remains wide open, as no model seems to satisfactory tie up all loose ends. 
 
 A promising capture mechanism has recently been proposed for Triton, the flag-ship of 
irregular satellites given its huge mass and inclined retrograde motion around Neptune. The key 
idea of this capture model is based on a three-body gravitational encounter, that is, two bound 
Kuiper belt objects would have adequately approached Neptune becoming finally disrupted, thus 
one member resulting captured by the planet – Triton – and the other one liberated. 
 
 The aim of this project has been be to investigate by computational analysis the properness 
of the binary-planet encounter mechanism for explaining the existence of three particular ‘hard’ 
cases: Triton, Phobos and Deimos. The weird Triton had been already analyzed, but this time a 
broader binary characteristic spectrum – both dynamical and physical – have been applied. On the 
other hand, no previous studies for the case of Martian moons were known. 
 
 The obtained results for Triton are in close agreement with published data, while at the 
same time new wider empirical parameters expanding capture feasibility have been found. 
Contrarily, results for both Phobos and Deimos have shown capture by binary-Mars encounters 
almost unviable for the broad range of tried binary characteristics. This poses a big interrogation 
mark on the binary-planet gravitational encounter model as the potentially flawless and very 
likely mechanism for explaining all satellite captures in the Solar System. 
 
 
Introduction 
 
Aside than closest small ring moons, natural satellites can be dynamically divided into two 
categories. On the one hand ‘regular’ satellites, which have nearly circular orbits in the equatorial 
plane of their host planets, orbit in the same direction as planet rotates – prograde motion – and 
lay at distances of several to tens of planetary radii. On the other hand, ‘irregular’ satellites, which 
present different characteristics like large, highly eccentric and/or highly inclined orbits around 
host planets, orbiting in either direction – prograde or retrograde. Typically regular satellites are 
large moons, while irregular ones are smaller. 
 

Clearly, dynamic behaviour of irregular satellites denotes an improbable primordial 
formation process – circumplanetary disk accretion around current parent planets – as regular 
moons have certainly undergone. While capture is the obvious explanation for the existence of 
irregular satellites, to know which particular mechanism actually occurred becomes of major 
importance, since it constraints planet formation models (Jewitt and Sheppard, 2005). 
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In order to become captured, a passing object must lose a precise amount of its orbital 
energy so that it can result gravitationally bound to a new master – the largest dominating mass in 
the vicinity. In case the kinetic energy loss of the passing object were too low, still it could 
overpass the gravitational potential energy of the system – comprised by the flying object and the 
planet – and hence no capture at all would result; while if too high, it could end in a direct 
collision with the planet. 
 

Technically, the privileged status of being “the largest dominating mass in the vicinity” 
translates as the region around some massive object where accelerations that it provokes on 
flying-by bodies are much larger than those due to other larger but most distant objects – known 
as its ‘Hill sphere’. Hence, permanent captures of near-by transiting objects by host planets can 
only take place within corresponding Hill spheres – a necessary but not sufficient condition. 

 
However, there is no agreement on which particular physical process has been the main 

cause of irregular satellites capture. Three mechanisms have been basically proposed for 
explaining the required energy dissipation – gas drag, pull-down, and three-body interactions – 
but none of them satisfactory answer all the interrogations. 
  

The first mechanism, capture by gas drag (Pollack et al., 1979), has to do with the 
deceleration that an object would have experienced while passing through the gas and dust of a 
primordial circumplanetary nebula. In case such breaking down action resulted precisely enough 
– neither too low, nor too high – the object would have been finally captured by the planet in 
question. However, for a passing object to be transformed into satellite this model requires that it 
should have encountered about its own mass within the nebula, a hard condition to satisfy except 
for those very small irregulars (Sheppard, 2005). 

 
The second mechanism, pull-down capture (Heppenheimer & Porco, 1977), refers to the 

situation resulting when a heliocentric object happens to pass close and with a very slow speed 
relative to a planet – typically in the nearness of a Lagrange point – which at the same time is 
rapidly increasing its Hill sphere. If such were the case, the otherwise temporary capture could 
lead to a permanent capture, as the object’s low energy could make it unable to escape the new 
enlarged Hill sphere. Although plausible, this mechanism requires an enlargement of the Hill 
sphere over a short timescale – either planet’s mass increase, Sun’s mass decrease or large planet 
migrations to happen over a few thousand years – a not very likely scenarios (Sheppard, 2005). 

 
Considering that the number of irregular satellites measured to a given size (a reference 

magnitude ~ 23) is approximately constant for the four giant planets (Jewitt & Sheppard, 2005), 
neither gas drag, nor pull-down seem to have been the unique capture mechanism for all irregular 
satellites, since development conditions for Jupiter and Saturn were radically different compared 
to those for Uranus and Neptune. 

 
The third mechanism, capture through three-body collisional or collisionless interactions 

(Colombo & Franklin, 1971), implies the right energy dissipation for one or both small interacting 
objects due to a close approximation within the Hill sphere of a planet. To work efficiently this 
mechanism requires a large number of passing bodies near the planets, orders of magnitude much 
larger than presently observed but possible for the early Solar System (Gomes et al., 2005; Hahn, 
2005). However, a simple and innovative restriction to this general mechanism greatly enriches it: 
the particular case when an approaching binary system interacts with a planet. 
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The capturing model by binary-planet encounters 
 
The binary-planet gravitational encounter model for explaining moon’s captures is a particular 
case of a three body collisionless interaction, where the required energy dissipation comes from 
slow speeds relative to the planet that each one of the binary objects transitorily experience during 
part of their revolution around the common centre of mass. If the net velocity of a binary member 
happens to drop below the escape velocity from a planet’s gravitational field then it would be 
captured – at least as long as it remains within the Hill sphere. 

 
Given modern increasing percentage trend of binary systems in the Solar System 

constituted by small bodies (Stephens and Noll, 2006), binary-planet encounters appear as a very 
likely explanation for satellite captures (Morbidelli, 2006). 

 
Agnor & Hamilton (2006) have recently presented an analytical description of the binary-

planet encounter process, and evaluated it by using numerical simulations for the particular case 
of binaries encountering Neptune. What follows until the end of this section is a succinct 
description of their theoretical analysis. 

 
Due to tidal acting forces, three body encounters will effectively provoke binary disruption 

when its center of mass passes close enough to the planet that the binary separation is about the 
Hill radius of the binary with respect to the planet. The binary’s Hill radius is given by 
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where binPd −  is the distance from the binary’s center of mass to the planet, and m1, m2, MP are 
respectively the mass of each binary component and the mass of the planet. Hence, the binary 
disruption will occur when rH(bin) equals abin (the binary semi-major axis), in which case the tidal 
disruption distance becomes 
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where MP, RP, Pρ  are respectively the mass, radius, and density of the planet, as well as m1, R1, 

1ρ  represent the same for the larger binary member, while m2 is the mass of the smaller one. 
Realizing that for usual values (roughly Pρ ≈ 1ρ , m1 ≈  m2) the term in square brackets is about 
one, then 
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 Numerical simulations of binary-planet encounters performed by Agnor & Hamilton 
confirmed this last result as the effective scaling length for binary disruption. 
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Considered from the planet perspective, the common center of mass of an approaching 
binary system is moving on a planetocentric hyperbolic trajectory, while both binary members 
orbit around it. On disruption, the smaller body (m2) experiences a change in speed about the 
same of its orbital speed around the binary center of mass – equal to π2  times its semi-major axis 
divided by its period – so that 
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where G is the universal gravitational constant. From conservation of momentum it becomes 
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 This last equation denotes that larger kinetic energy loss values for binary object #1 (the 
satellite candidate) are potentially obtained from binary systems with small semi-mayor axis and 
larger massive companion. 
 
 Whenever the mass of the planet is much more larger than the mass of the binary system, 
according to Agnor & Hamilton impulsive transfer from an initial hyperbolic encounter orbit to a 
final bound elliptical orbit at a particular distance (r) from the planet requires a reduction in speed 
for the captured object of  
 

 ( )capPPcap arGMrGMvv /1/2/22 −−+=Δ ∞      {6} 
 
where ∞v  is the velocity at infinity of the hyperbolic orbit, and acap is the semi-major axis of the 
resulting captured orbit. 
 

Equating equations {5} and {6} it results an expression relating the binary characteristics 
(m1, m2, abin) to the encounter parameters ( ∞v , r) and resulting captured orbits (acap) for the 
considered planet (MP). According to the authors, the further the binary disruption takes place 
from the planet (the greater the r), the larger the resulting semi-major axis of the captured orbit 
(acap). 
 

Also, Agnor & Hamilton state that because the tidal forces that cause binary disruption are 
maximized when the three bodies are most nearly aligned, preferred relative positions between 
binary members – binary orbital phases – are selected when disruption occurs, which 
correspondingly makes that resulting semi-major axis of the captured object also achieve quite 
similar values. 

 
As previously said, in order to become the capture permanent, the satellite candidate 

object of the binary system must be transferred to a bound elliptical orbit totally contained within 
the Hill sphere of the host planet (rH). Considering that for very high eccentricities the captured 
object will be flying far away at most as almost two semi-major axes from the planet, then 
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where aP is the semi-major axis of the planet’s orbit, and MS is the mass of the Sun. 
 
 Once the disrupted binary object has been effectively captured, a new irregular satellite 
will have been born (most probably, with a large initial eccentricity). In Agnor & Hamilton’s own 
words, “in principle, this [binary-planet encounter] mechanism can transfer an object to virtually 
any satellite orbit if the requirements of disruption and capture can be satisfied by the encounter 
dynamics and the binary characteristics”. 
 
 
The SWIFT simulator code 
 
Despite simplicity and universality of Newton’s law of gravity, the analytical solution of an 
evolving gravitational system containing just three bodies become unsolvable, let alone a complex 
system embracing many more objects. Thus, due to their inherently non-linear nature, the only 
way to study N-body dynamical problems is by means of numerical analysis. 
 

Numerical analysis, nowadays exclusively performed by computers, consists in finding the 
motion of each body in the system by iteratively summing the forces on each of them over small 
time increments. That is, by knowing all forces acting at the beginning of a tiny time interval it 
becomes possible to work out the approximate position and velocity for each body of the system 
at its end – the so-called timestep. Proceeding in that way a very good approximate solution can 
always be found, just on condition of using proper numerical algorithms and small enough time 
increments. 
 

The numerical analysis for this project has been applied by means of the SWIFT Solar 
System Dynamics code designed by Levison and Duncan (1994), running at the Centre for 
Astrophysics and Supercomputing at Swinburne University of Technology (Melbourne, 
Australia). 
 

The SWIFT Solar System Dynamics code was developed with the main purpose to 
accurately integrate the orbits of small objects in the Solar System on timescales approaching its 
full age. Paradoxically, in order to succeed in such long-term dynamical goal the code firstly 
requires being able to precisely follow the short-lived close approaches between small objects and 
planets. Not only SWIFT fulfills both demands, but it does so very efficiently. 
 

The SWIFT code is based on the also high efficient algorithms pioneered by Wisdom and 
Holman (1991), called the Mixed Variable Symplectic (MVS) method. In the MVS method, the 
Hamiltonian from which the equations of motion are derived can be written as just the sum of two 
independent integrable components: one representing the Keplerian motion, and the other 
representing the interactions – mutual perturbations of the bodies on one another. Time evolution 
of the system is obtained by iterating a canonical transformation – the mapping step – so that the 
mapping results symplectic. This guarantees that the Hamiltonian remains constant for long 
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integrations, or in other words, no secular changes in the energy of the system1 (Murray & 
Dermott, 1999). 
 

The improvement introduced by the SWIFT code is to treat planetary close encounters – 
every times a body comes in the vicinity of a planet – with particular care, as planetary 
perturbations can and certainly do play an important dynamical role just during such transient 
conditions. Physically, the region where a planet exerts higher gravitational influences than that of 
the Sun is called its Hill sphere, and thus it is the exclusive region for planetary perturbations. 
Depending on the location of the considered particle relative to a planet and its Hill radius, close 
encounters can or cannot take place. 
 

Hence, in case the considered particle lies either very close to a planet – within one Hill 
radius – or in the “intermediate” zone – between 1 and 3.5 Hill radius –  the idea is to 
automatically decrease the timestep of the integration with preset factors. Given that at the 
intermediate zone dynamical uncertainties are implicitly greater– it is the region where the forces 
from the Sun and the planet become comparable – the corresponding timestep decreasing factor is 
also higher. 
 

Besides wisely employing different timesteps, SWIFT also takes particular advantage of 
the situation when a particle is located within one Hill radius of a planet. Under these 
circumstances, the MVS separation of the Halmitonian is performed so that the Keplerian part can 
be centered about the planet rather than the Sun, a treatment that allows integrating arbitrary close 
encounters. This improved technique is known as the Regularized Mixed Variable Symplectic 
(RMVS) method. 
 

The SWIFT Solar System Dynamics tool can simulate up to 20 massive bodies, plus up to 
1,000 massless test particles, all orbiting a single central massive object. The required dynamical 
parameters of each massive body or test particle can be input either by entering its six Cartesian 
coordinates (x, y, z, dx/dt, dy/dt, dz/dt) or by means of just three orbital data (eccentricity, semi-
major axis, and inclination) which will be automatically converted into proper Cartesian 
coordinates for a random initial position. The code requires that at least two test particles are 
present at the beginning of the integration. 
 

Finally, the code requires that three time parameters must be defined in advance. Two of 
them are of fundamental importance, as the ‘total integration time’ and the ‘timestep’ will rule the 
simulation; the third one, the ‘data output time’ – the time elapsing between each showed data –
will be largely responsible for how long it will actually take. Each simulation will run for the total 
integration time as long as test particles remain within the system – that is, not been removed by 
means of either ejections or collisions.  
 
 
The calculation of initial conditions 
 
As said, this study about the capture viability of some particular satellites due to the disruption of 
a binary system that happened to pass close enough to the host planet is based on computational 

                                                 
1  Almost all conventional direct numerical integration techniques (like the well-known Runge-Kutta method) 
have quadratic phase error growth caused by the linear growth of their energy errors (Gladman et al., 1991). In 
contrast, as symplectic integrators have no energy error growth their phase errors grow linearly, so that they become 
particularly suited for long-term integrations. 
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analysis. The model for simulating such binary-planet encounters assumes that (a) the binary 
system approaches the planet on a hyperbolic trajectory, and (b) the binary system can be 
impulsively disrupted just as a direct consequence of gravitational forces in play. 
 

Any considered binary system following an approaching hyperbolic trajectory with respect 
to a steady planet can be properly characterized by a set of unique particular parameters. They can 
be divided into dynamical parameters, such as speed at infinity ( ∞v ) and close approach distance 
( eq ), binary orbital parameters, such as semi-major axis (abin), eccentricity (ebin) and inclination 
of the orbital plane (Ibin), plus obviously physical parameters, such as the masses of each object 
(m1, m2). 
 

In this study the binary eccentricity will always be zero (ebin = 0) so that each member of 
the binary system describes a circle around the common center of mass, and also the binary 
orbital plane will always coincide with the plane of the hyperbolic trajectory of the common 
center of mass (Ibin = 0). At the same time, the mass of the first binary member (m1) will always 
be equal to the mass of the moon whose case is being analyzed, and the closest approach distance 
of the hyperbolic trajectory will be equal to half the tidal disruption distance ( eq  = 0.5 rtd) unless 
otherwise explicitly stated. 
 

The incidence of the remaining three parameters ( ∞v , abin, and m2) is the base of this 
present computational analysis. Each particular set of parameters defines a different physical 
situation, and correspondingly different consequences could be expected for each one. After a 
proper translation of a given parameter set into SWIFT input data, the software tool will simulate 
the close encounter between such incoming binary system and planet in order to dictate a 
computational verdict about capture viability for the binary moon candidate. 
 

SWIFT requires knowing the exact location and velocity for each binary body at the 
beginning of simulation, that is, their Cartesian coordinates (x1, y1, z1, dx1/dt, dy1/dt, dz1/dt) and 
(x2, y2, z2, dx2/dt, dy2/dt, dz2/dt) referred to the central object (0, 0, 0, 0, 0, 0) at time t = 0. 
Considering that Ibin = 0, then it immediately becomes z1 = z2 = dz1/dt = dz2/dt = 0. The remaining 
coordinates can be obtained from the combination of the hyperbolic displacement of the binary’s 
common center of mass (x0, y0, dx0/dt, dy0/dt) plus the respective circular independent movements 
of each body around it. 
 

In order to facilitate the computation, the binary members are selected to be initially 
located at the same ordinate, which implies (a) y1 = y2 = y0, and (b) the circular orbital velocity in 
the x-direction around the common center of mass becomes null, so that dx1/dt = dx2/dt = dx0/dt. 
At the same time, x1 = x0 – a1 and x2 = x0 + a2, where a1 and a2 are respectively the radii of each one 
of the circular orbits, and also dy1/dt = dy0/dt – v1 and dy2/dt = dy0/dt + v2, where v1 and v2 are 
respectively the circular orbital speeds. 
 

Therefore, required binary members initial conditions become known from calculating 
four independent binary orbital parameters (a1, a2, v1, v2), plus finding out the correspondent 
initial coordinates of the binary center of mass (x0, y0, dx0/dt, dy0/dt). 
 
 
i) Determining the binary orbital parameters a1, a2, v1, v2. 
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Given m1, m2, and abin, the period of the binary system (P), the respective semi-major axes (a1, a2) 
of the orbits around the common center of mass  – which in this case actually are radii – and their 
respective circular speeds (v1, v2), become determined according to the following formulas: 
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where G is the universal gravitational constant. 
 
 
ii) Converting dynamical parameters of the hyperbolic trajectory into 
planetocentric Cartesian coordinates (x0, y0, dx0/dt, dy0/dt) 
 
The two geometrical parameters that define a coplanar hyperbolic curve are its semi-major axis 
(ah) and eccentricity (eh), so called by extension of the properties for the ellipse case, and then 
generically applied for any conic-section derived curve. Hence, the distance from the focus to a 
given point on the hyperbola (r) that lays at an angle (ϕ ) from the symmetrical axis that cuts the 
curve is 
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The closest distance to the focus (qe) results whenϕ  = 180°, thus becoming 

 
qe = ( )1−hh ea         {12} 

 
The speed (vh) of a moving object in a hyperbolic trajectory due to the only gravitational 

influence of a steady body placed at its focus, results 
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where m is the mass of the moving object (or m = m1 + m2 for an approaching binary system), and 
M is the mass of the steady body. Therefore, at infinity (where r = ∞ ) velocity results 
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From equations {12} and {14} it results that the dynamical parameters ∞v  and eq define 
unequivocally the geometrical coefficients ah and eh, and vice versa. 
 

As already explained, the tidal disruption distance becomes equal to 
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where abin is the binary semi-major axis, MP, RP, Pρ  are respectively the mass, radius, and density 
of the planet, as well as m1, R1, 1ρ  represent the same for the larger binary member, while m2 is 
the mass of the smaller one. Considering object #1 to be the potential candidate for becoming 
captured, m1 and 1ρ  have to be equal to actual physical values of the satellite in question and thus 
both known, as well as RP. 
 

The closest distance to the focus (qe) is chosen to be 0.5 rtd, so that from equation {15} 
such distance becomes known for any given values of parameters abin/R1 and m2. Consequently, 
based on the assumptions already taken, the hyperbolic curve to be described and the velocity at 
any point become perfectly determined once arbitrary values for abin, m2, and ∞v  are given. 
 

The greatest velocity of the binary common center of mass following the hyperbolic 
trajectory takes place at its closest distance to the planet (vq), and then it can be found by 
replacing r by qe in equation {13}. The position of the binary center of mass on the hyperbolic 
trajectory at the beginning of each simulation (r0) has to be wisely selected: not too far from the 
planet so that to avoid wasting unproductive integration time, not too close from the planet so that 
to avoid provoking immediate binary disruption. The arbitrary chosen criterion – whose 
properness was later on effectively corroborated – is to start all simulations from the instant when 
the binary center of mass lays at a distance to the planet equal to maximum orbital speed times the 
binary period, thus r0 = vq x P. 
 

Having r0, the corresponding initial angle 0ϕ  can be derived from equation {11}, and 
hence the coordinates of the common center of mass simply become 
 
 x0 = r0 cos 0ϕ          {16} 
 y0 = r0 sin 0ϕ          {17} 
 
and correspondent velocity coordinates result 
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where MP represents the mass of the central planet (Murray & Dermott, 1999).
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Description of the experiments 
 
In order to investigate the viability of the model for satellite capture by binary-planet encounters 
three practical cases have been analyzed: Neptune’s largest moon (Triton), and the two small 
Martian moons (Phobos and Deimos). These cases were selected as a genuine challenge for the 
model under test, given not only the wide intrinsic difference in satellite masses, but of Hill 
spheres of host planets as well. On the one hand, Triton has a huge mass and moves around its 
large parent planet on a very inclined and retrograde orbit; on the other hand, both Phobos and 
Deimos appear as ‘regular’ tiny Martian satellites, although there is general agreement that they 
were also captured (S. Fred Singer, 2003). 
 

Triton’s likely capture due to a binary-planet encounter had been firstly analyzed by 
Agnor & Hamilton (2006). About the potential capture of the Martian moons by means of the 
binary-planet encounter mechanism, so far no published literature could be found. 
 
 Despite the origin of incoming binary systems for each case necessarily has to be different 
(from the Kuiper Belt for Neptune, from the asteroid belt for Mars), dynamically is still the same 
issue. In consequence, runnings for Triton’s, Phobos’ and Deimos’ cases only differed in the 
numeric values for the masses of corresponding planet, satellite-candidate and companion. 
 

All simulations were performed embracing exclusively the three bodies in question – the 
binary system and the planet – a much simpler but still valid scenario for this study than including 
other massive distant objects. In any case, several simulations were actually performed 
positioning the Sun as the central object, but they proved to be highly time-consuming (passing 
from a planetocentric to an equivalent heliocentric simulation requires larger integration times) 
and worthless (outcomes from long heliocentric simulations were basically the same from short 
planetocentric ones, except for the omission of the ulterior predictive solar gravitational effect). 

 
For each simulation, time parameters were selected according to the following criteria: 
 

1) The total integration time was arbitrarily chosen as 25 times the period of the binary system 
(as it took 3 or 4 periods for the binary system to reach qe, simulations still lasted for a proper 
interval in order to show stabilized results). 

2) The timestep was initially chosen following the thumb rule as 1/20 of the considered period 
(which generally assures the right balance between precision and time investment). However, 
in a few cases where obtained outcomes achieved larger values for resulting a1,2 or e1,2 (as a 
direct consequence of numerical unstabilities) in order to obtain coherent and trustful results it 
was necessary to rerun those simulations with new timesteps as low as 1/100 of their previous 
values. 

3) The output data time was always defined as 1/2000 the total integration time (that is, the 
maximum allowed value). 

  
For each simulation it was recorded the final semi-major axis (a1 and a2) and eccentricity 

(e1 and e2) of each object of the incoming binary system. Much more than 500 simulations were 
performed along this study, consuming about 40 hours of processing time (~ 5 minutes each). 
 
The simulation of Triton’s capture 
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The selection of the ranges of input parameters ( ∞v , abin, and m2) was made taking into account 
Agnor & Hamilton’s experience, but trying to diversify them in order to analyze a broad scenario. 
In consequence, the range for ∞v  was defined to vary from 100 to 3,200 m/s (higher values are 
very unlikely, as passing-by binary KBOs have slow speeds relative to Neptune, even for 
Centaurs2); the range for abin was from 4 to 500 Triton’s radius (larger semi-major axes for a 
binary KBOs seem improbable), while the range for m2 was from 0.05 to 1.35 Triton’s mass 
(larger relative mass differences for KBOs also seem not very probable). 
 

Regarding that for a potential capture ∞v  becomes the parameter of major incidence, its full 
range was then divided into six values (100, 200, 400, 800, 1600, and 3200 m/s, each value 
doubling the previous one), while for the other two parameters abin, and m2 only four were allowed 
(for abin: 4, 20, 100, and 500 Triton’s radius, for m2: 0.05, 0.15, 0.45, and 1.35 Triton’s mass, each 
value respectively 5 and 3 times larger than previous ones). That makes 96 possible combinations. 
For each one possible combination of input parameters, one simulation was performed. 
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With the specific objective to analyze the incidence of the relative orbital initial positions 

of each binary member – the orbital phase – series of 12 simulations were performed for exactly 
the same ∞v , abin, and m2 parameters, just each time varying 30 degrees counterclockwise the 
relative initial location of binary members. The relations for obtaining the corresponding 
Cartesian coordinates for both position and velocity are shown in Figure 1.(In such context, all 
“regular” simulations were performed for α  = 180°). 

 
                                                 
2  Relative to Neptune, crossing objects achieve NH vev ≈∞  (Agnor & Hamilton, 2006) where He  is the 

heliocentric eccentricity of the object, and Nv  is Neptune’s orbital speed. Centaurs are KBOs with highly unstable 
orbits which usually have high eccentricities – so that they usually are crossing Neptune’s orbit. In particular a binary 
Centaur (2002 CR46) has been already found (Selby Cull, 2006). 

Figure 1 
The orbital phase analysis 

At right appear the expressions for the Cartesian coordinates for position and velocity for each 
�binary member, depending on the angle  between the line joining them and the x-axis. 
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Two cases were selected for testing orbital phase incidence: one corresponding to a case 
that had been originally cataloged as a ‘strong’ positive-capture case ( ∞v  = 800 m/s, m2 = 1.35 
MTrit, abin = 20 RTrit, giving a = 0.024 AU, e = 0.941 and still a permanent capture even if one 
parameter were changed to its next tried value), while the other corresponding to a ‘non-
capturing’ case ( ∞v  = 400 m/s, m2 = 0.45 MTrit, abin = 100 RTrit, giving a = 1.131 AU, e = 0.992) 
that at least resulted a transitory capture. 

 
The simulation of Phobos’ capture 

 
The selection of input parameter ranges for this second case was made after several tentative 
runnings were performed. Clearly, the tiny mass of the red planet greatly restrains its capturing 
potential (in this case, even the lowest ∞v  tried for Triton’s case provoked too high kinetic 
energies). In consequence, the range for ∞v  was defined to vary from 0.1 to 100 m/s (that is, 
starting from a very unlikely small value up to a respectable one; higher values for potential 
crossing binary objects, although possible, will certainly not result in captures according to 
several actually performed simulations); the range for abin was from 4 to 500 Phobos’ radius 
(which seems to fairly cover the expected semi-major axis length for binary asteroids), while the 
range for m2 was from 0.1 to 100 Phobos’ mass (which seems to properly cover all relative mass 
spectrum for binary asteroids). 
 

As same as for previous case, the full range for ∞v  was then divided into six values (0.1, 
0.4, 1.6, 6.4, 25, and 100 m/s, each value about 4 times larger than the previous one), 4 values for 
abin (4, 20, 100, and 500 Phobos’ radius, each value 5 times greater) and also 4 values for m2 (0.1, 
1, 10, and 100 Phobos’ mass, each value one order of magnitude greater), also making 96 possible 
combinations. 

 
Given the obtained capture results, another 96 simulations were run for the same input 

parameters, but this time imposing to the closest distance to the focus (qe) of the incoming 
hyperbolic trajectory of the binary center of mass to be just 0.1 of the tidal disruption distance 
(rtd), that is, to become five times closer to the planet than before, when qe = 0.5 rtd. 

 
Finally, two cases were also selected for testing orbital phase incidence ( ∞v  = 6.4 m/s, m2 = 

10 MPhob, abin = 20 RPhob and ∞v  = 100 m/s, m2 = 100 MPhob, abin = 20 RPhob). They were selected 
because results were relative close to positive-cases (respectively, a = 0.05 AU, e = 0.998 for the 
first one, and a = 0.012 AU, e = 1.008 for the second). 
 
The simulation of Deimos’ capture 
 

The selection of input parameter ranges for Deimos’ case was made equal than for 
Phobos’. In consequence, six values were chosen for ∞v  (0.1, 0.4, 1.6, 6.4, 25, and 100 m/s), 4 
values for abin (4, 20, 100, and 500 Deimos’ radius), and also 4 values for m2 (0.1, 1, 10, and 100 
Deimos’ mass), thus also making 96 possible combinations. 

 
Not specific orbital phase study was performed, but the fact that there was a case having 

m2 = 1 = m1 implied that capture analysis was simultaneously done for both objects (as if it were 
two phases of the same case).
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Results and Discussion 
 
For the three particular cases considered, simulations always ended with the incoming binary 
system disrupted, each object achieving an independent trajectory after close interaction with the 
planet took place. This was an expected outcome, as all hyperbolic curves were forced to pass 
very close to planets (at least at half the corresponding tidal disruption distance). 
 

Also, as it should be, no single simulation ended with eccentricity for both objects lesser 
than 1 (the gravitational interaction with the planet can rearrange orbital energy of binary 
members and it certainly does, but the rise of one body is done at the expense of the other’s fall). 
Therefore, results from simulations were of only two possible types after disruption took place: 
either (i) one eccentricity greater than 1, while the other lesser than 1, or (ii) both eccentricities 
greater than 1. The first type corresponded to one object becoming transitory captured (as Figure 
2 shows al left), while the second type corresponded to both objects flying away per independent 
curves (too much initial kinetic energy, as Figure 2 exemplifies at right). 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 3 presents eccentricity versus time for the binary-planet encounter shown at left in 

Figure 2. Initially, each binary object orbits around the common center of mass, so from the 
planetocentric view, both eccentricities oscillate – with the binary period – around a common 
fixed value (in this case, slightly greater than 1). As the binary system approaches the planet each 
member experiments here increasingly gravitational influences (clearly denoted by the strong 
increase of the envelope of relative maximums of each eccentricity curves) until the binary system 
becomes definitively disrupted (occurring for t ≈  0.04 years). Afterwards, in this example, object 
# 1 becomes captured (e1 ≈  0.92), while object # 2 escapes (e2 ≈  1.07). 

Figure 2 
Typical y vs x plots from simulations mimicking binary-planet encounters. 

At left, the case where object # 1 becomes captured; at right, both members escape after disruption. 
Parameters corresponding to each graph are detailed in the next related figures. 
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Figure 3 
Typical eccentricity vs time plot for a binary-planet encounter, where the object # 1 becomes captured 

�after disruption (for t = 0.04 yr). Triton’s case simulation: = 200 m/s, m2 = 1.35 MTrit, abin = 20 RTrit. 

Figure 4 
Typical eccentricity vs time plot for a binary-planet encounter, where none of the objects become captured 

�after disruption (for t �0.03 yr). Triton’s case simulation: = 3200 m/s, m2 = 1.35 MTrit, abin = 20 RTrit. 
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Figure 4 presents eccentricity versus time for the binary-planet encounter shown at right in 

Figure 2, where dynamical results are totally different. Here, previous to disruption (occurring for 
t ≈0.03 years), both “incoming” eccentricities oscillate while decreasing their relative maximums 
around e≈1.37 (an “excessive” kinetic energy for permitting a capture). In this case, both object 
rapidly escapes (e1 ≈1.52, e2 ≈1.29) after the encounter took place. 

 
As said before, e1 < 1 only implies a transitory capture of the satellite candidate. 

According to equation {7} permanent captures for Triton’s case are only possible on condition 
that corresponding a1 < 0.388 AU, while for Martian’s moons it is required a1 < 0.0036 AU (less 
than one hundredth the previous value). 
 
 
Triton’s case 
 
Results for the performed 96 simulations appear in the following page, as well as corresponding 
input ∞v , abin, and m2 parameters for each run. In yellow appear 37 results that simultaneously 
verify a1 < 0.388 AU and e1 < 1, that is, there were found 37 cases of binary-Neptune encounters 
ending in permanent (‘positive’) capture of an object with the same mass as Triton. It becomes 
worth mentioning that the eccentricity for all positive-cases was always pretty high ( 918.0≥e ). 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  

Figure 5 
Final eccentricity vs final semi-major axis (in AU) of the Triton-candidate object after binary disruption. 

The graph only shows those results obtained where SMA are smaller than 0.5 AU, and eccentricities 
lower than 1.2. Different colours are used to represent results obtained for different masses of the binary 

companion, for 24 different combinations of velocity at infinity and binary SMA parameters. 
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v(inf) 
(m/s) 

a_bin 
(RTrit) 

m2 
(mTrit) SMA #1 

 
ecc #1 

 

100 4 0,05 0,0881 0,9950 
200 4 0,05 0,0938 0,9953 
400 4 0,05 0,1246 0,9965 
800 4 0,05 0,4272 1,0010 

1600 4 0,05 0,0229 1,0191 
3200 4 0,05 0,0048 1,0909 
100 20 0,05 0,4749 0,9954 
200 20 0,05 0,6972 0,9969 
400 20 0,05 0,8639 1,0025 
800 20 0,05 0,0869 1,0252 

1600 20 0,05 0,0199 1,1106 
3200 20 0,05 0,0043 1,5094 
100 100 0,05 4,0881 0,9973 
200 100 0,05 2,4725 1,0044 
400 100 0,05 0,3334 1,0328 
800 100 0,05 0,0682 1,1628 

1600 100 0,05 0,0179 1,8283 
3200 100 0,05 0,0045 3,4306 
100 500 0,05 8,0823 1,0068 
200 500 0,05 1,2918 1,0423 
400 500 0,05 0,2752 1,2019 
800 500 0,05 0,0719 1,7605 

1600 500 0,05 0,0195 9,3268 

v(inf) 
(m/s) 

a_bin 
(RTrit)

m2 
(mTrit) SMA #1 

 
ecc #1 

 

100 4 0,15 0,0270 0,9845 
200 4 0,15 0,0277 0,9849 
400 4 0,15 0,0305 0,9863 
800 4 0,15 0,0456 0,9908 
1600 4 0,15 0,0560 1,0074 
3200 4 0,15 0,0057 1,0741 
100 20 0,15 0,1408 0,9851 
200 20 0,15 0,1580 0,9867 
400 20 0,15 0,2684 0,9922 
800 20 0,15 0,1589 1,0131 
1600 20 0,15 0,0252 1,0840 
3200 20 0,15 0,0042 1,5156 
100 100 0,15 0,8277 0,9873 
200 100 0,15 1,7081 0,9939 
400 100 0,15 0,5130 1,0203 
800 100 0,15 0,0633 1,1730 
1600 100 0,15 0,0180 1,5817 
3200 100 0,15 0,0045 3,3706 
100 500 0,15 1,6985 0,9693 
200 500 0,15 1,7821 1,0292 
400 500 0,15 0,2597 1,2104 
800 500 0,15 0,0728 1,7109 
1600 500 0,15 0,0179 4,1189 

v(inf) 
(m/s)

a_bin 
(RTrit) 

m2 
(mTrit) SMA #1 

 
ecc #1 

 

100 4 1,35 0,0037 0,9176 
200 4 1,35 0,0037 0,9183 
400 4 1,35 0,0038 0,9205 
800 4 1,35 0,0040 0,9256 

1600 4 1,35 0,0046 0,9369 
3200 4 1,35 0,0132 0,9774 
100 20 1,35 0,0187 0,9192 
200 20 1,35 0,0193 0,9215 
400 20 1,35 0,0204 0,9268 
800 20 1,35 0,0243 0,9405 

1600 20 1,35 0,0760 0,9797 
3200 20 1,35 0,0035 1,5334 
100 100 1,35 0,0968 0,9219 
200 100 1,35 0,1036 0,9281 
400 100 1,35 0,1309 0,9450 
800 100 1,35 0,1132 0,9294 

1600 100 1,35 0,0145 1,6286 
3200 100 1,35 0,0047 2,5993 
100 500 1,35 0,5262 0,9296 
200 500 1,35 0,7292 0,9507 
400 500 1,35 0,0525 0,9236 
800 500 1,35 0,0513 1,8676 

1600 500 1,35 0,0186 2,9484 

v(inf) 
(m/s) 

a_bin 
(RTrit) 

m2 
(mTrit) SMA #1 

 
ecc #1 

 

100 4 0,45 0,0095 0,9603 
200 4 0,45 0,0097 0,9612 
400 4 0,45 0,0101 0,9626 
800 4 0,45 0,0114 0,9671 

1600 4 0,45 0,0194 0,9810 
3200 4 0,45 0,0103 1,0368 
100 20 0,45 0,0486 0,9612 
200 20 0,45 0,0512 0,9632 
400 20 0,45 0,0590 0,9683 
800 20 0,45 0,1298 0,9858 

1600 20 0,45 0,0507 1,0379 
3200 20 0,45 0,0039 1,5178 
100 100 0,45 0,2596 0,9637 
200 100 0,45 0,3088 0,9697 
400 100 0,45 1,1306 0,9918 
800 100 0,45 0,1647 1,0594 

1600 100 0,45 0,0156 1,6490 
3200 100 0,45 0,0045 3,0521 
100 500 0,45 1,6311 0,9715 
200 500 0,45 11,2990 0,9989 
400 500 0,45 0,2263 1,2301 
800 500 0,45 0,0766 1,6087 

1600 500 0,45 0,0180 3,4383 
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Just from a rapid inspection of the relative position that positive cases occupy in the tables 
it results that positive cases seems to be favoured by larger mass of Triton-candidate companion, 
by smaller velocity at infinity, and also by smaller binary orbits. 
 

Figure 5 partially plots the final eccentricity versus final semi-major axis of object # 1 
obtained from the 96 simulations, showing only those results with lowest eccentricities and 
SMAs. Points of same colour represent outcomes obtained from simulations ran for the same 
mass of the companion object. The vertical dashed line corresponds to 0.388 AU, so that the 37 
coloured points lying at its left and under e = 1 actually represent the positive capture cases. 
 
 A more detailed and objective analysis for Triton’s case can be done based on comparison 
of data extracted from the following graphs. 
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Figure 6 
Final eccentricity of object # 1versus velocity at infinity (m/s) of the incoming binary system. 

Each one of the cases for stated mass of object # 2. All cases compare the relative incidence of the abin factor 
(blue lines are used for 4 AU, while green for 20 AU, orange for 100 AU, and red for 500 AU). 
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Figure 6 compares final eccentricity of object # 1 versus the full considered range for 
velocity at infinity, as it varies the semi-major axis of the binary system, and for a given mass of 
the binary companion. As the graphs clearly show, in order to achieve potential captures (e1 < 1): 

 
1) The lower ∞v , the better (lower ∞v  means smaller overall kinetic energies for both incoming 

binary members, so that increasing capture chances).  
2) The greater m2, the better (according to equation {5}, a more massive companion makes the 

satellite candidate to achieve larger orbital speeds, which in turn facilitates to achieve 
temporarily higher drops in its net velocity referred to the planet). Just by comparing the 
graphs it immediately results that, given the same ∞v  and abin, lower e1 are obtained from 
greater m2.  

3) The lower abin, the better (for any given binary companion, the nearer its distance, the greater 
the orbital speed of the satellite candidate – equation {5} – thus also helping to provoke the 
same effect as the previous point). 

 
The analysis of the incidence of the orbital phase was performed for two particular 

Triton’s cases, one corresponding to an original ‘capture’ case (e1 = 0.94, a1 = 0.024 AU) 
corresponding to parameters ∞v = 800 m/s, abin = 20 RTrit, m2 = 1.35 MTrit (Figure 7), while the 
other to an original ‘non-capture’ case (e1 = 0.99, a1 = 1.105 AU) corresponding to parameters ∞v  
= 400 m/s, abin = 100 RTrit, m2 = 0.45 MTrit (Figure 8). 
 

From the orbital phase studies, it can be concluded the following: 
 
1) Effectively, the relative orbital position of the binary members does affect the succeeding 

dynamical state that each object achieves after the binary system becomes disrupted. 
2) For the considered cases, the shape of the final eccentricity curves (shown in dashed lines) is 

practically very similar, while the shape of the final semi-major axes changes dramatically. 
3) Qualitatively, eccentricity curves have mirror-symmetry with respect to each other, surely 

affected by relative mass differences. 
4) Quantitatively, phase variation in final eccentricity of the moon candidate (object # 1) in the 

first case is slightly higher than in the second case, while phase variation in final eccentricity 
of companion (object # 2) is slightly lower in the first case compared to the second. These 
results are originated in the fact that in the first case m1 < m2, so that object # 1 experiences a 
major change in velocity than object # 2, and vice versa for the second case. 

5) For both cases, the best capturing condition (lower possible values for e1 and a1 at the same 
time) occurs for α ≈60°. 

6) There are two zones (around α ≈45° and α ≈215°) where minor angle changes result in 
major variations in the resulting eccentricity. 

7) The orbital phase position actually selected for performing all Triton’s simulations (α = 180°) 
lays within eccentricity “stabilized zone” for both cases, while at the same time corresponds to 
the worst capture condition for the second case, as a1 achieves its maximum value). 

8) For both cases, both objects achieve eccentricity lesser than unity for half the full angular 
range. For the first case, where a1 < 0.388 AU always, this means captures are viable for half 
the possibilities (180° out of 360°). 

9) The second case also exhibits e1 < 1 from about 48° to 218°, but in that region a1 < 0.388 AU 
only from 48° to 78°. Therefore, this case that originally was cataloged as ‘non-capture’ due 
to its high a1, actually still has a positive capture probability of 8.3 % (30° out of 360°). 

 



Project: The Capture of Satellites by Binary-Planet Encounters  -  Course: HET 617, November 2006 
Instructor: Dr. Sarah Maddison  -  Student: Eduardo Manuel Alvarez 

Page 19 of 25 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 8 
The orbital phase study for a ‘non- �capture’ case ( = 400 m/s, abin = 100 RTrit, m2 = 0.45 MTrit) 

The graph shows the final eccentricity and semi-major values obtained from 12 simulations, each one 
started by rotating 30 degrees the initial position of binary object # 1 with respect to the x-axis. 
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Figure 7 
�The orbital phase study for a ‘capture’ case ( = 800 m/s, abin = 20 RTrit, m2 = 1.35 MTrit) 

The graph shows the final eccentricity and semi-major values obtained from 12 simulations, each one 
started by rotating 30 degrees the initial position of binary object # 1 with respect to the x-axis. 
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Extrapolating conclusions obtained from the partial phase orbital analysis to the rest of the 

96 individual performed simulations, it could be inferred that: 
 
a) Due to a close binary-planet encounter, the capture by Neptune of a Triton-like object from a 

binary system appears totally plausibly; 
b) Such captures would occur with a probability up to 50% for ‘favourable’ combinations of ∞v , 

abin, and m2 parameters (the same conclusion obtained by Agnor & Hamilton in 2006); 
c) The 37 positive-capture cases found in this work belong to such category of ‘favourable’ 

parameter combinations for satellite capture; 
d) Other than those ‘favourable’ cases, there are many more combinations of ∞v , abin, and m2 

parameters that also allow a follow-up capture, although with (much) lower probabilities of 
success; 

e) Considered each parameter isolated, captures are still potentially possible for (i) any value for 
the velocity at infinity that real binary KBO systems approaching Neptune can achieve (from 
almost null up to as high as 3,500 m/s, as already mentioned, the highest expected for binary 
Centaurs crossing Neptune’s orbit), (ii) almost any companion mass (from as low as 0.05 MTrit 
up to no upper limit, as larger companion masses clearly favour captures according to 
equation {5}), and (iii) almost any binary semi-major axis (from no minimum up to 500 RTrit, 
a more than respectable large value for binary KBO systems). 

 
 
Phobos’ case 
 
Figure 9 presents the final eccentricity versus final semi-major axis for binary object # 1 obtained 
from the performed 96 simulations, although only showing those results with lowest eccentricities 
and SMAs. Considering that a Phobos-like object can be permanent captured whenever e < 1 and 
at the same time a < 0.0036 AU, clearly not even a single positive case has resulted. 
 
 In order to facilitate capturing conditions, another 96 simulations were run for the same 
input parameters, but this time forcing the hyperbolic trajectory to pass closer to Mars (thus using 
a new qe = 0.1 rtd instead of the 5 times greater previous value). Corresponding new results appear 
plotted in Figure 10, in just the same conditions of Figure 9. 
 
 In this new context, three positive cases were found, although very close to frontier lines. 
Actually, one of them (a = 0.0037, e = 0.8856) is slight outside, while the other two have 
eccentricity ≈1 (a = 0.0030, e = 0.9947, and a = 0.0031, e = 0.9949), corresponding to parameters 
∞v  = 1.6 m/s, abin = 100 RPhob, m2 = 100 MPhob for the first one; ∞v = 0.1 m/s, abin = 4 RPhob, m2 = 

100 MPhob for the second; and ∞v = 25 m/s, abin = 4 RPhob, m2 = 100 MPhob for the last. 
 
 Comparing Figures 9 and 10, it can be inferred that the new closer passage of the binary 
system does provoke much more cases of low eccentricity and semi-major axis for the Phobos-
like object than before, although such results are still far for expecting possible captures. 
 

Predictably, the phase analysis performed for two cases did not show any capture-
privileged angular position that would have resulted hidden from previous analysis. Figures 11 
and 12 depict the respective curves. Anyway, an interesting abrupt decrease both in eccentricity 
and SMA was found for a narrow zone around α ≈60°, although still a > 0.0036 AU.
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Figure 9 
Final eccentricity vs final semi-major axis (in AU) for a Phobos-like object after binary disruption. 

The graph only shows those results obtained where SMA are smaller than 0.04 AU, and eccentricities 
lower than 1.15. Different colours are used to represent results obtained for different masses of the binary 

companion, for 24 different combinations of velocity at infinity and binary SMA parameters. 
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Figure 10 

The same ‘e vs a’ graph as previous figure but for another 96 simulations. 
This time the hyperbolic approaching trajectory was forced to pass nearer Mars, while all other 

parameters remained the same. The scale of this plot exactly matches the previous one. 
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Figure 11 
�The orbital phase case for = 100 m/s, abin = 20 RPhob, m2 = 100 MPhob. 

For those angular positions where e1 < 1, always a1 > 0.0036 AU, so that no permanent capture is possible. 
Given the large mass of the companion, both its a2 and e2 practically does not vary at all. 

Figure 12 
�The orbital phase case for = 6.4 m/s, abin = 20 RPhob, m2 = 10 MPhob. 

��For clarity sake, curves for companion object have been omitted. About 150° it is observed an abrupt 
decrease for both object # 1 curves; anyway, permanent capture is not possible because still a1 > 0.0036 AU. 
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Despite having tried with ∞v  values much lower than those used for Triton’s case, and 
also approaching Mars from closer binary trajectories, practically no favourable combination of 
parameters for a permanent capture of a Phobos-like object was found. Two factors concur for 
such outcome: (i) the relative low mass of the red planet (160 times lower than Neptune’s) which 
makes its gravitational potential energy simply too weak for overcoming kinetic energies of 
approaching binary members, and (ii) the relative nearness of the Sun (only 5 % of Neptune’s 
semi-major axis) which makes its Hill sphere too small for completely containing the large orbits 
of those transitorily captured objects. 
 
 
Deimos’ case 
 
Figure 13 presents the final eccentricity versus final semi-major axis for a Deimos-like object 
obtained from the performed 96 simulations, although only showing those results with lowest 
eccentricities and SMAs. Not surprisingly, given that Deimos is physically alike Phobos (about 
20% lesser mass, 50% lesser diameter), the graph is very similar to those obtained from Phobos’ 
cases. Again, no permanent captured cases were found. 
 
 Simulations for both Martian moons have been run covering a wide range of potential 
binary asteroids: the full spectrum for expected velocity at infinity, three orders of magnitude for 
the mass of the companion, and more than two orders of magnitude for the binary semi-major 
axis. Nevertheless, no cases were found to support the idea that Martian satellites were captured 
by means of a binary-planet gravitational encounter. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 13 
Final eccentricity vs final semi-major axis (in AU) for a Deimos-like object after binary disruption. 

The graph only shows those results obtained where SMA are smaller than 0.04 AU, and eccentricities 
lower than 1.15. Different colours are used to represent results obtained for different masses of the 
binary companion, for 24 different combinations of velocity at infinity and binary SMA parameters. 
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Conclusions 
 
Capture of irregular satellites is still one major topic in modern Solar System dynamics. Recently, 
the ‘old’ capture model by three-body interactions has been improved by considering binary-
planet encounters – where the required energy dissipation comes from the slow speeds relative to 
the planet that each one of the binary objects transitorily experiences during part of their 
revolution around the common centre of mass. 
 
 In order to investigate the viability of binary-planet gravitational encounters as the likely 
mechanism for general satellite capture, computational analysis was applied to the three particular 
cases that seem to lie at the Antipodes of the satellite scale: Triton, Phobos and Deimos. For each 
one, simulations roughly covering a wide spectrum of potential binary characteristics were 
performed. 
 

Results for Triton have been highly auspicious, as the simulations have showed a broad 
range of favourable binary characteristics that would have ended in the capture of a Triton-like 
object. On the contrary, results for both Phobos and Deimos have shown capture by binary-planet 
encounters almost unviable due to Mars’ low mass and small Hill sphere. 

 
This outcome clearly controverts Agnor & Hamilton’s optimism about the binary-planet 

gravitational encounter model becoming the very likely mechanism for explaining virtually all 
satellite captures in the Solar System. Specifically for the Martian satellites, transitory captures 
due to binary disruptions could have been the trigger for their origin, but at least some other 
mechanism necessarily had to act in order to provoke their permanent captures. 
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